A computer vision approach to playing the board game
English Draughts through NAO robot technology

Russell Wilson

A dissertation submitted to
The school of Computing Sciences of the University of East Anglia
in partial fulfilment of the requirements for the degree of
MASTER OF SCIENCE
AUGUST, 2021

©This dissertation has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with the author and that no quotation from
the dissertation, nor any information derived therefrom, may be published without the

author or the supervisor’s prior consent

SUPERVISOR(S), MARKERS/CHECKER AND ORGANISER

The undersigned hereby certify that the markers have independently marked the dis-
sertation entitled ”A computer vision approach to playing the board game English
Draughts through NAO robot technology” by Russell Wilson, and the external examiner
has checked the marking, in accordance with the marking criteria and the requirements for

the degree of Master of Science

Supervisor:

Dr. R. Lapeer

Markers:

Marker 1: Dr. Lapeer

Marker 2: Dr. Day

External Examiner:

Checker/Moderator

Moderator:

Dr. Wenjia Wang

DISSERTATION INFORMATION AND STATEMENT

Dissertation Submission Date: August, 2021

Student: Russell Wilson

Title: A computer vision approach to playing the board game English Draughts
through NAO robot technology

School: Computing Sciences

Course: Computing Science

Degree: MSc

Duration: 2020 - 2021

Organiser: Wenjia Wang

STATEMENT: Unless otherwise noted or referenced in the text, the work described
in this dissertation 1s, to the best of my knowledge and belief, my own work. It has not
been submitted, either in whole or in part for any degree at this or any other academic
or professional institution. Subject to confidentiality restriction if stated, permission is
herewith granted to the University of East Anglia to circulate and to have copied for non-
commercial purposes, at its discretion, the above title upon the request of individuals or

institutions.

Signature of Student

Abstract

NAO robot technology represents the future for robotics and applied computer vision. NAO
robots provide an introduction to concepts of robotics and computer vision for learned and
developing programmers alike. Currently, the available online and physical resources that
demonstrate the potential and capabilities of NAO robotics remain sparse, with visibility of
NAO projects using computer vision and written in Python nearly non-existent. This docu-
ment outlines a computer vision model built in Python2 that utilises the OpenCV library to
identify and classify counters in the game of English Draughts through an image captured
by a V4 NAO robot. The proposed solution, uniquely, does not operate with the support
of machine learning concepts but can classify counters in the game with an average accu-
racy of 83%. However, this paper finds with further optimisation of processes documented

within this body of work, the average accuracy obtained could be significantly higher.

Russell Wilson

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Dr Rudy Lapeer, whose experience, wisdom
and humour played a pivotal role throughout the lifespan of my dissertation.
I would also like to acknowledge Dr Wenjia Wang for his support throughout my time
at university and thank my friends, Roberto and Matthew for their valuable time spent
proofreading.
Finally, I would like to offer a special thanks to my partner Amber, mother Stephanie, father
Stephen and little sister Ariane, who always play an indispensable role in all aspects of my

work, life and beyond.

Russell Wilson

Norwich, UK

Contents

1 List of Abbreviations

2 Introduction

2.1 Backgromnd . : iwox ¢ sy cwn v vma s euis wwa w BE s 8 Fats &
22 Researchobjective
23 Documentstrochire . . 5 5 20 3 s96 5§ 655 5 @s & 6595 5 a5 5§ &4

3 Literature review

3.1 Computer vision viewed holistically
32 NAOtechnology
33 Relatedwork ; . : ¢ 5o vw5 5 sms v so s s ws & $558 5 855 ¥

4 Methodology

4.1 Computer vision image processing concepts
41.1 Imageresizing
4.12 Morphological transformations
413 Greyscaleconversion
414 2D transformations
Als anssianbBINmNDt . . o wc ¢ o @ ssus BB & GEE @ SEe B
416 Canny edge detection
A.1.7 Imagecomowrs ;= s s w6 5 s 5 5 a5 § 593 § §55 5 955 ¥4
4.1.8 Histogram equalization
42 Artificial intelligence . . . : ¢ v n 2 cme 2 vms v o5 2 sma ¥ v mu v
5 Design
5.1 ThemlesofEnglishDraughtso v v v s vy oan oo
5.2 Agile methodology
>3 Projectdesion » s ws s vz v@s 2 156 5 sME TS5 L UEE S FEY U

6 Implementation

6.1 NaoimageacquiSilion: ., . . . s : cws s 65 5 3 w6 % 6596 & 855 ¥
6.2 Imageprocessing
6.3 Dranghts gamEloRIic ; v cos » vma ¥ sis 265 ¥ §Wa ¥ 594 74

10
10
10
10

12
12
13
15

16
17
17
21
23
24
26
27
31
34
36

37
37
39
40

7 Results
7.1 Processing times
7.2 Image classification

73 Gamelogic

8 Evaluation
8.1 Is the proposed system viable?

82 System comparison to literature
9 Conclusion and Further work

A Appendix

51
51
53
55

55
33
57

58

62

List of Figures

OO0 1 Sy b R N —

e e e e e e T e e
o0 N2 Oy R WD~ O

19
20
21

27
23
Al
A2

A3
A4
AS
A6

Bilinear interpolation 18
BicubicInterpolation . .« < « w5 & cw s v swn v ws 5 e55 5 dmn 8 20
Saltand peppernoiseo 21
Kernel Matrix 22
From left, Non Gaussian blurred image, 5x5 Gaussian blurtoones . . . 27
Canny edge detection operation 28
Sobelfiltered image « : ;55 s w5 5 vws ¥ s vGE § LW § SE T H 29
Non-maximum Suppression 30
CHONY EOgEME0E . « + v v s @5 » §0 6 5 5% P83 8 §96 3 583 24 31
Original image (left) and global histogram equalised image (right) 34
English Draughts game 38
Project pIpeling: . «: ¢ amv cwn s voma o pms sws v oms 2 oms oo 41
NAO head and camera positioning 42
NAO robot game positioning, 44
NAO API broker system 45

Left: image before gamma correction. Right: image after gamma correction 46
Left: image before Gaussian blurring. Right: image after Gaussian blurring 46
From left: gradient(Min:95 Max:100), gradient(Min:95 Max:190),

gradient(Min:95 Max:290), gradient(Min:95 Max:390) 47
Poly approximated contours 48
From Left: No image equalisation, image equalised and board bezel removed 49

From Left: Counter detection, rendered virtual gameboard, created NumPy

ATTAY 49
Time taken to complete computer vision processes 52
Measure of image classification accuracy 54
Image processing pipeling . : s v rws s sws v o3 2 FwE b v EE E 62

Size of the global market for industrial and non-industrial robots between

2018 and 2025 L 63
Game process SWIMIANe .. v« s cuwes o sms somn % s s & ea s o 64
Project file structure 65
NAOheadrofationrange . : « o5 2 s55 5 vos v o5 8§ sma 5 vt ¥ s 65
Code of available move logic 66

A7 Code of opponent move logic

1 List of Abbreviations

API Application programming interface
CPU Central processing unit

SVM Support vector machine

USP Unique selling point

RGB Red, green and blue colour channels
BGR Blue, green and red colour channels
SBR SoftBank Robotics

CNN Convolutional neural network

KPI Key performance indicator

2 Introduction

2.1 Background

The necessity of this work is in the response to an omission of work focused on implement-
ing NAO robotics with Python, using computer vision concepts. NAO is a robot that has
many applications outside of computer vision, such as natural language processing opera-
tions for example. In cases of documented work with computer vision through NAO, whilst
there may be names of image processing algorithms, the exact implementation process is
not defined which makes it extremely difficult to replicate. NAO is an extremely capable
form of robotics and accessible to beginner programmers, while offering much flexibility in
the types of applications it can be used for. Providing information on more ways to utilise
NAQO, serves to promote innovation within the computer vision community and spark the
creativeness of young developers that will fuel academic growth through the application of
NAO.

2.2 Research objective

In accordance with the background, the objective of this work is to test a combination of
NAO technology and computer vision in the process of playing the game, English Draughts.
Spectfically, this work seeks to test if the application of NAO with computer vision can pro-
duce an accurate, computationally cheap and timely system that is capable of identifying

counters in the game draughts and selecting a legal optimal move.

Research hypothesis

In measuring the success of the work documented and the results obtained from system
implementation a hypothesis statement is established. This can be given as, "It is a viable
application to utilise NAO robotics and computer vision, unsupported by machine learning,

in detection and placement of the counters in the game draughts”.

2.3 Document structure

This document contains seven key sections, summarised as follows.

10

Literature Review
Firstly, a background to computer vision is established to ensure the reader understands
where this work is positioned with relation to computer vision and its application. Next, a
high level overview of robotics is discussed to ensure the benefits of utilising a NAO robot
against alternatives is understood. Finally, relevant academic work is discussed to provide

context to the chosen algorithms suggested in this work.

Methodology
This work assumes the reader may have minimal or little experience with computer vision,
therefore this section is required to equip the reader with a basic foundation of knowledge
regarding all of the algorithms used within this project. With a foundation of knowledge,

the reader can critically review the approach taken in this work.

Design
This section starts by outlining the rules for English Draughts to remove confusion that
stems from alternative known variations of the game. The project methodology applied in
implementing the programmed system is then discussed and a quick overview of the pro-

cess with reference to the evaluation criteria is also discussed.

Implementation
The stages of implementation of the proposed programmed solution are then defined in de-

tail, from start to end with challenges of implementation also discussed.

Results
The results of the implementation are then tested against the evaluation criteria, established

in the Design stage.

Evaluation

Following the collection and delineation of implementation results, the provided results

Ll

will be critically evaluated with reference to academic literature to analyse the implemen-
tation process objectively. Following this stage, a conclusion will provide a summarisation
of work produced in this document and provide discussion ideas for future work before

concluding.

3 Literature review

3.1 Computer vision viewed holistically

When defining a computer vision project it is first important to examine the scope of com-
puter vision. IBM (2021) defines computer vision as a field, “that enables computers and
systems to derive meaningful information from digital images, videos and other visual in-
puts — and take actions or make recommendations based on that information”. Inline with
this definition, computer vision can be seen as a product of two core elements, digital image
generation and data retrieval resulting in new data insight.

A Camera Processing Pipeline is the title given to the preliminary steps taken that govern
the creation of a digital image, the various stages include rendering, colour correction, de-
mosaicing, denoising and encoding.

There 1s a bountiful amount of work produced by academics which focuses on reviewing
and improving the camera processing pipeline. From the plethora of work there are many
suggestions on how to reduce computational requirements to greatly improve image capture
speed and image quality. Jayasuriya et al. (2017) considers the classic camera processing
pipeline, see Appendix A.1, and outlines an adjustable sensory solution, which given a
set of required image parameters, will produce the required image by removing camera
pipeline stages from the camera pipeline that have high computational cost and contribute
a small amount to the final constructed image, this solution is estimated to save 75% of the
average energy cost in producing images from modern camera technology. Producing any
work suggesting improvements to the image capture process would be highly contested and
would not be likely to produce any new perspective to the field of computer vision.

When we consider image processing techniques there are sufficient omissions in litera-
ture to pursue studies highlighting new techniques to improve image processing or intro-
duce new constructs in image processing. Xiaofeng & Bo (2012) innovated on the classi-
cal method of object detection with contour detection by introducing support vector ma-

chines (SVM) for increased accuracy in contour detection. Contour detection is applied in

12

many applications of object detection and 1mage segmentation, including the research doc-
umented in this dissertation. There is also a possibility to find new insight by critiquing and
comparing algorithms and methods in image processing. Matuska et al. (2012) explored
two leading computer vision libraries (OpenCV and Matlab) to compare CPU performance
when applying computer vision algorithms through each library. The final consideration
for needed academic work lies in the exploratory application of computer vision image pro-
cessing, specifically applying adaptions of known computer vision algorithms to solve new
problems not yet challenged by other academics. Academic work focused on exploratory
applications could be considered integral to global economic growth, increasing the world’s
understanding of computer vision capabilities while also producing many social benefits,
the focus of this study. Grand View Research (2020), valued the 2019 global computer
vision market at $10.6 billion and indicated the market is likely to grow at 7.6% annually
from 2020 to 2027. Khemasuwan et al. (2020) outlined the potential of computer vision in
identifying cases of COVID-19 through pulmonary examination with the support of ma-
chine learning and deep learning concepts. Xia et al. (2018) highlighted the necessity of
applying computer vision concepts in tracking biological markers in aquatic life to indi-
cate dangerous levels of water toxicity. Whilst computer vision is not a new concept, it
remains evident that the field continues to grow and through the integration of other forms
of technology, such as NAO robotics, there exist too many unrealised global rewards from

the product of computer vision to have the field ignored.

3.2 NAO technology

NAO robot technology is a product of SoftBank Robotics (SBR), formally known as the
French company, Aldebaran. Robots produced by SBR have a humanoid look, which is
very apparent with the models NAO and Pepper. The NAO robot, in addition to the hu-
manoid look, supports a variety of motors and actuators that provide humanoid like move-
ment and are both innovative and patented. All versions of the NAO robot from the version
3.2 to the version 5.0 come with integrated video cameras, contact sensors and a micro-
phone. “Its exclusive actuation system based on brush DC motors and modularity of the
robot limbs allows further evolution and aid maintainability. These are the innovative traits
that distinguish NAO from its Japanese, American and other counterparts”, Shamsuddin
et al. (2011). In addition to NAO, SBR have produced Pepper, a humanoid robot designed

for improved human interaction compared to the NAO robot. Pepper in contrast to NAO

13

delivers some different features that include improved facial tracking and a improved mi-
crophone array. However, Pepper has reduced points of movement due to a wheel based
movement system, where NAO offers a kinematic walking system which is much like hu-
man movement. The Pepper robot was designed after the release of the NAO robot and
like NAO has undergone many upgrades and improvements, however Pepper production
has been discontinued as many businesses terminated their hire contracts for Pepper ow-
ing to an insufficient business user case. The initial USP of Pepper was an autonomous
machine able to successfully read human emotions and respond, very useful in a sales en-
vironment such as retail, however Metz (2021), confirms that even with the assistance of
IBM, an industry leading business in the market of machine learning and Al concepts, the
Pepper robot was not able to successfully read human emotions and was re-purposed by
SBR as a general assistance robot. Though SBR offer the Whiz Cobot cleaning robot, due
to the specialised function of the robot, while exemplifying the values of computer vision
in solving common and laborious problems such as cleaning, research focused on integrat-
ing new or different computer vision concepts with the Whiz Cobot is unlikely to benefit
further research, and so should be limited. Further studies based on the application of Pep-
per in computer vision have the potential to produce much merit for the computer vision
field, however as Pepper is to be discontinued currently. The most promising SBR solution
that can be applied with computer vision concepts and produced new studies is the NAO
Robot.

The robotics industry much like the computer vision industry is growing exponentially
each year. Statista (2019) expects the global industrial and non-industrial robotics market
to be worth nearly $210 billion by the year 2025, please also see Appendix A.2 for year
by year growth. The ability for robotics to automate the boring, physically taxing and nec-
essary jobs that bring value to people and businesses is unrivaled. Both industrialised and
non-industrialised applications of robots such as the Whiz Cobot, that applies programmed
cleaning routines, utilise computer vision concepts to perform tasks. Karuppiahetal. (2018)
applied combined computer vision image segmentation by colour for object detection with
a wheelchair mounted robotic arm for automatic recognition and collection of household
items, assisting someone with limited mobility. Yeotikar et al. (2016), combined a com-
puter vision template matching algorithm with a robotic arm in the implementation of dental
implants for patients with great success. Shamsuddin et al. (2011) highlighted that NAO
technology 1s ground breaking in terms of current global robotic capabilities, as the demand

for computer vision applications and robotics increases globally, further research into ap-

14

plications of NAO and computer vision are justified and essential for academic growth.

3.3 Related work

There exists an abundance of work that focuses on introducing computer vision concepts to
board games, specifically the game chess which, likely sparked by the popularity of IBM’s
Deep blue and its prestigious success over Garry Kasparov 1n 1994, has become the gold
standard for applications of computer vision and board games. Most recently Wolflein &
Arandjelovi¢ (2021) attempted to recognise and store the positions of game pieces in the
game of chess through computer vision programming assisted by a convolution neural net-
work (CNN), which 1s an applied machine learning concept. Interestingly, the resulting
solution was able to detect pieces on the board with an accuracy of 93.86% where no errors
exist. Additionally, the speed of computation was also very impressive, with the proposed
system capable of real-time detection at speeds of two frames per second. Many publi-
cations explore the possibility of chess with Al and computer vision assisted by machine
learning concepts owing to the exciting new prospective of combining all these techniques.
Recently, work published on the use of robotics in the games of chequers or draughts, which
are fundamentally similar, has been exclusively orientated on integrating new and improved
Al techniques aimed at making robotic gameplay as intelligent as possible. Meng (2019)
explored the idea of implementing an Al system using a bespoke Monte Carlo tree search
algorithm to best an Al applying an Alpha-Beta pruning algorithm. It has been noticed, that
there exist few publications focused on the use of computer vision in draughts, specifically
the techniques and methods to identify the type of piece and position of the piece relative
to the draught’s board location. Kopets et al. (2020) chose to adopt magnetised counters
and modified a chequers board with hall effect sensors placed on each game square, ensur-
ing the magnetise chequers could be detected at all positions on the board. Lewis & Bailey
(2004) published a brief snapshot of a project that implemented computer vision to enable a
robotic arm to detect a chequers gameboard, select an optimal move and move the chequer
autonomously. Unfortunately, the publication does not feature information on the relevant
computer vision steps taken to successfully implement computer vision into the project and
leaves the work hard to replicate. There then exists an omission of work that is purely fo-
cused on applying and documenting the methods of computer vision applied in draughts,
which could help students and professionals alike to further understand the capabilities of

computer vision.

15

Interestingly, 1t 1s not unique to see robotics applied in computer vision or to the game che-
quers as can be seen in Lewis & Bailey (2004). However, there is lesser publicised work
that looks at applied computer vision with NAO, but NAO remains a versatile form of en-
gineering, extremely capable in applications of computer vision. Magallan-Ramirez et al.
(2021) programmed NAO robots to successfully communicate with each other and provide
instructions on how to complete a maze. The processed involved one virtual robot attempt-
ing to complete a 3d replicate of the maze, storing the shortest path from maze start to
exit and then communicated this to a physical NAO robot which then used the information
to complete the physical version of the maze. The project employed Canny edge detection
and projective transformations successfully with NAO to establish boundaries of the mazes,
techniques that are adopted as part of this documented project. Unlike most other projects
involving NAO robots, the project opted to program the robots in Python2 using OpenCV
and scikit-learn. Conversely, Szemenyei & Estivill-Castro (2018) introduced a real time
object detection system programmed in C++, that used deep learning CNNs 1n real-time to
detect objects in a game of football played by NAO robots. It is evident to see the speed
of C++, the compiler language, when applied in a computer vision applications thanks to
Szemenye1 & Estivill-Castro (2018), However, it 1s Python, the interpreted language, that
1s a much more accessible language to those that are new to programming. As this work is
encouraged to be a learning exercise, it is necessary to program in Python to ensure that it
i1s easily replicated by many others. At the time of writing this document, it has not been
possible to find any work that applied computer vision through NAO technology to play
the game draughts. This is interesting as NAO has been designed to look and feel human,
unlike a lot of other robots that show no expressions and are built purely for industrial ap-
plications, the NAO robot has the potential to be found in a domestic setting where some of
its likely applications may include playing games such as draughts. It is therefore necessary
to investigate draughts played with NAO to spark further creativity among academics and
inspire further work focused on applications of NAO in computer vision. This work will
stand to further entrench NAO as a lightweight yet effective robotic solution for computer

visions problems.

4 Methodology

This section is focused on providing context to the computer vision algorithms employed

within this project. By reviewing these algorithms and their structure with reference to

16

alternative algorithms, the reader should appreciate the logic behind the direction of this
project while gaining a solid foundations of knowledge to review the implementation crit-

ically.

4.1 Computer vision image processing concepts

When considering a computer vision project there is an abundance of computer vision al-
gorithms and computer vision libraries that can be adopted. OpenCV and Matlab are two
of the leading libraries for computer vision and accommodate all types of computer vision
projects, alternative libraries tend to focus more specifically on machine learning and deep
learning 1n computer vision, which 1s not necessary within this project. OpenCV 1s an open
source library while Matlab is a licensed library, and both allow the design of computer
vision solutions in languages such as Python or C++ however, Matuska et al. (2012) noted
that OpenCV is less computationally expensive for computer vision applications than Mat-
lab and is a lighter solution for computer vision. Owing to OpenCV computational lightness
and the ability to easily replicate the work in this document it was decided to adopt OpenCV

for the project documented in this work.

4.1.1 Image resizing

Image resizing is a core function in computer vision. An image may be enlarged to increase
visibility of key image features or alternatively, an image may be shrunk to reduce the com-
putational requirements of computer vision algorithms. By reducing the number of pixels
within the image the computational requirements are reduced. The core OpenCV resizing

algorithms are:

+ Bilinear interpolation
* Nearest neighbor interpolation
* Bicubic interpolation

Bilinear interpolation

When increasing or decreasing the size of an image, Bilinear interpolation can be used

to interpolate the function of a missing pixel’s value in the resized image, in a cost effective

L

manner.

Y
Y2 [T o p GEDT . e ans e @TR
I
yl ®BL:--- .B ?BR

Figure 1:"Bilinear interpolation

First an image is increased or decreased by a scaling factor, reflecting the change in the
ratio of size with respect to the initial image. For example, reviewing Figure 1 it is possible
to see an enlargement operation where the functions of the known pixel RGB values from
the original image are given as

TL,TR,BL,BR

However after the resizing the image there are now unknown pixel RGB values which can
be seen as:

A B,C

the unknown values can be calculated by applying Bilinear interpolation.
Firstly to find the value of A and B respectively, linear interpolation is applied. The value

for A can be given as a function of TL and TR, where:

fA) ~ 27T L)+ 2L f(TR) where A= (2,ys)
To — Iy T2 — I
and
FB)~ 2=Z f(BL)+ ——ZLf(BR) where B = (z,y)
Lo — X1 Tg — Xy

18

And the by applying Bilinear interpolation it is possible to solve for C , where:

%yzf’y A Yy—14
f(C) yrylf()+y27y1f(3)

Solving by Bilinear interpolation is a straight forward mathematical operation and can be

less computationally expensive than other resizing operations whilst be extremely efficient.

Nearest Neighbour Interpolation

The nearest neighbour method 1s a relatively simplistic algorithm, favoured due to the speed
of computations. The nearest neighbour interpolates the unknown functions of pixels by
taking the ratio of pixels in the original image to the new image and multiplying each pixel
by the ratio. Consider a 3x3 matrix of pixels that represents an image, given by the matrix

below:
1 2 3

1 2 3
1 2 3

To enlarge the matrix to a 6x6 image using nearest neighbour interpolation the ratio of pixel

from the old to the new image must be calculated and are given below:
; 3 :
Ratio,gy = 6 and Ratio.otumn = —

With the known ratios the new image matrix can be calculated according to the

Ratio,o, and Ratioeonwmn values, see below:

1 02030 112 2 3 3

000000 1. 1.2 2 3 3

102030 112 23 3
NewlImage = —

000000 11223 3

1 02030 112 2 3 3

000000 112 2 3 3

While the nearest neighbour may be the simplest interpolation algorithm, an image that has
been enlarged will not have weighted RGB values for each pixel. Instead the image will
have a distinct range of pixels with specific RGB values which will cause the image to look

pixelated when enlarging the image with any significant scaling. A Bilinear interpolation

19

will ensure edges are smoother and less pixelated as RGB values are calculated according

to a weighted pixel distance.

Bicubic Interpolation

Bicubic Interpolation works much like Bilinear interpolation, however the function of a
pixel is determined through a 4x4 grid of pixels surrounding the unknown pixel value in-
stead of a 2x2 pixel grid. The missing pixel value is then calculated in the same manner
as Bilinear interpolation. considering figure 1, the enlargement operation under Bicubic

interpolation now becomes figure 2.

Y
............ .TL...TR
............ ...A..

oC
............ ...B..
............ .BL...BR

Figure 2: Bicubic Interpolation

With the additional sub-pixel range to calculate, the pixel C' will be more reflective
of the weighted RGB values shared by the 16 pixel neighbourhood in comparison to the
standalone Bilinear interpolation. This will better assist cases where there are different light
contrasts across an imagine and will likely give a smoother image with less bias towards a
single pixel RGB value.

The Bilinear interpolation methods should be sufficient when appling image resizing to this
project. Han (2013) noted that there was a 25% average increase in the processing times of
resizing operations using Bicubic instead of Bilinear interpolation. The camera used in this

project has a resolution of 1.22mp and is not likely to benefit greatly based on resolution

20

from Bicubic interpolation additionally, with limited processing power due to hardware

limitations, Bilinear interpolation resizing is optimal for this project.

4.1.2 Morphological transformations

Morphological operations can be applied through the OpenCV library to remove image
noise. Salt and pepper noise, specifically, represents a problem in image processing oper-
ations with a camera that has fewer sensors and reduced hardware, such as the camera in

the NAO robot.

Figure 3: Salt and pepper noise

An example of salt and pepper noise can be seen in figure 3. Salt and pepper noise
results from variations in image luminosity and shadow levels and can really hinder object
detection by colour, owing to the differences in pixel RGB values that do not occur on the
object but are created when the image of the object 1s processed. A combination of dilation
and erosion operations can be adopted through OpenCV’s opening algorithm to address
salt and pepper noise, this is a processing step taken successfully by Paterson & Aldabbagh

(2021) to improve gesture detection of a robotic arm.

Erosion

In an erosion operation the image to be eroded 1s adjusted by a structuring element, also

known as the kernel. The structuring element can take any shape, however common opera-

21

tions take a 3x3 square matrix as the kernel, this can be seen in figure 4. Image convolution
operations, are operations that adjust an original image according to a kernel matrix into
a new image, such operations include sharpening, blurring and dilation operations. The

general expression of a convolution operation can be given as:
@ B
gy =wrflry)= S w(de,dy)f(z+ dr,y + dy)
de——ady——b

where g(z, y) represents the new image, f(x,y) represents the old image and w repre-

sents the kernel.

1 1 1
1 1]1

Figure 4: Kernel Matrix

An image can be divided into a foreground and background, in an erosion operation the
foreground is reduced and replaced by the background. When considering a binary black
and white image, the erosion operation can be seen as follows. The kernel is first passed
over an image, if the centre of the kernel is placed on a pixel with a background value, the
pixels in the image surrounding the location of centre pixel will be adjusted according to
the size of the kernel neighbourhood, the adjusted pixels will be changed to the background
RGB range which is zero in this case. Ifthe centre of the kernel is placed onto a foreground

pixel, which has a value of one, no change takes place. This operation can be seen below.

_U 00 0O0O0O0© 0 000O0O0OOO0OO
011111120 000O0O0O0OO0OO0
01111110 00111100

originalimage newimage
v 1L L L.L .1 1 0 g g.L. 414 1 10D
01111110 000O0O0OO0O0O
0000O0O0O0OOQO0 000O0O0O0OO0OO

This operation 1s extremely effective when there is a single isolated foreground pixel

surrounded by background pixels, like in the case of salt and pepper noise. By removing the

22

1solated pixel image processing operations become easier when applying object detection

methods.

Dilation

Image dilation operations work like an erosion operation but in a different direction.
Taking again a binary image, first a structuring element usually, a 3x3 matrix square kernel,
is passed through an image. When the centre of the kernel is placed on a foreground pixel
value, in this case a value of one, the pixels in the image surrounding the location of the
centre pixel will be adjusted according to the size of the kernel neighbourhood, the adjusted
pixels will be changed to the foreground RGB range which is one in this case. If the centre
of the kernel is placed onto a background pixel, which is has a value of zero, no change

takes place. This operation can be seen below.

00 00O0O0O0O0 0000O0O0O0T® 0

00 00O0O0O0O0 01 111110

001111¢00¢0 01111110
original image new image

001111¢00¢0 01111110

00 00O0O0O0O0 01 111110

0000O0O0O0O0 000O0O0OO0OOO® O

Dilation operations can improve object detection activities by improving edge defini-
tions. A combination of an erosion operations and dilation operations, known as an opening
operation, can be applied from the OpenCV library to first remove noise which isolates and
removes single pixel noise. Once the isolated pixel 1s removed, the image can be dilated to
the original foreground ratio. This an essential step in image processing, that was applied

effectively by Paterson & Aldabbagh (2021).

4.1.3 Greyscale conversion

A greyscale conversation is a simple image processing operation which takes a coloured
image represented by a 3D array and converts it into a greyscaled image, which is rep-
resented by a 2D array, by transforming each pixel of a coloured image into a greyscale

value which lies between a binary value. Greyscale images are less computationally ex-

23

pensive to processes, owing to having less depth. This makes converting coloured images
into greyscale images an essential requirement for most computer vision processing. A
greyscale conversion can be performed through averaging the current colour, in the case of

an RGB colour range the greyscale value can be given as:

_R+G+EB

F(z,y) 3

A greyscale conversion can also be performed by converting a pixel value by a chosen
weighting, where W is given as an assigned weighting and the general formula can be
given by:

F(z,y) = (W1 x R) + (WyxG) + (W3 x B)

and

Wi+Wo+Ws=1

4.1.4 2D transformations

Digital image transformation can be an essential step in successful image processing projects.
Wolflein & Arandjelovi¢ (2021) applied protective transformations to create a top down
view of a chess gameboard. Common 2D image transformation operations included rotat-
ing or scaling an image, in these transformations operation the pixel location, given by (x, y)
is passed through a matrix My that will generate the new pixel location (z/, y').Considering

a rotation operation, that can be seen below

24

Where the new pixel translation can be given by

x' = zcos(0) — ysin(0) (1)
y' = xsin(#) + ycos(6)

the transformation matrix can then be given as

o cos(8) —sin(0)| |=

!

Y sin(@) cos(0) y

Projective transformations and affine transformations are slightly more complex than
rotation operations or scaling operations. These operations involve transforming images
on a 3D plane and can be performed with homogeneous coordinates, where (z, y) becomes
(x,y,w) and w represents the pixel depth. Project transformations unlike affine transfor-
mation change the perspective of the image, such as in the case of Wolflein & Arandjelovi¢

(2021). The homogeneous transformation matrix can be given as

’VI"-‘ [T] ’Vhll 1112 h13-‘ [T]
fy" = ALE,' y| = hgl]122 hQS Y
w' w h3l hs32 hs33| |w

25

4.1.5 Gaussian blurring

Blurring operations in computer vision are effective in removing noise from images, specif-
ically salt and pepper noise. A blurring operation is a convolution operation that distorts
the original images by removing definition and blurring the pixels. In understanding how
blurring can reduce image noise, a basic blurring or filtering operation with a greyscale
image 1s recommended. Through averaging with a 3x3 kernel it is possible to reduce the

image noise, as can be seen below.

90 20 55 90 20 55
original,image | 10 255 90 | = Newimage | 10 98 90
100 120 140 100 120 140

In the example above the centre pixel in the original image can be given as a and the
centre pixel in the new image can be given by b where b can be calculated as the average
from the kernel neighbourhood in this case.

a 239

b=— — 98
k 9

It 1s possible to see that the high pixel value of 255, which is the maximum value of
white, has been adjusted to 98 in accordance to the average of the pixel neighbourhood
and therefore the noise, which can be seen as the imbalance in the neighbour, has been
corrected. A Gaussian blur assumes a Gaussian or normal distribution of pixel’s RGB
values from the centre of a kernel to the kernel boundary. The kernel values are weighted,
with each deviation away from the centre pixel the weight is reduced, with closer pixels
having greater weighting on the centre pixel colour. Gaussian blurring is more effective
at preserving definition in a blurred image than basic blurring methods such as averaging.
As Gaussian filtering empathises the weighting of pixels closer to the centre of the kernel,
when the kernel is placed on an edge, the immediate pixels external to the centre are high
determinants of the pixel RGB range, ensuring edges are more defined than if blurring
through a non weighted neighbour average. The general equation of Gaussian distribution
can be given as:

1 sty
exp 22
2ma?

Gl&, 7, e)=

Where o gives the standard deviation of the distribution and (x, y) provides the location

26

of the pixel. Once a Gaussian kernel is established as can be seen in the example below,
it is possible to see that the highest weightings are placed on the centre pixel of the kernel
and the pixels closest to the kernel centre. To produce the blurred image a convolution op-
erations passes the Gaussian kernel through the original image and generates a new image,

an example Gaussian kernel is produced below.

1 4 7 4 1 0.004 0.015 0.03 0.015 0.004]
4 16 26 16 4 0.015 0.06 0.10 0.06 0.015
7 26 41 26 7| — Gaussian Kernel | 0.03 0.10 0.15 0.10 0.03

4 16 26 16 4 0.015 0.06 0.10 0.06 0.015
1 4 7 4 1 _0.004 0.015 0.026 0.015 0.004_

Increasing the size of the Gaussian kernel for example to a 15x15 matrix greatly in-
creases the convolution processing time and therefore the computation time, however Gaus-
sian blurring is extremely effective at removing noise and is a necessary operation in object
detection operations. Palekar et al. (2017) applied Gaussian blurring to remove noise in a

real-time licence plate reader. Figure 5 below

Figure 5: From left, Non Gaussian blurred image, 5x5 Gaussian blur to one o

4.1.6 Canny edge detection

The Canny edge detection algorithm, developed by John F. Canny, Canny (1986), is popular
In image processing operations involving object detection. Canny edge detection can be

applied to a greyscale image, separating and highlighting all possible edges within an image,

27

as can be seen 1n figure 6.

Figure 6: Canny edge detection operation

In applying Canny edge detection there are five essential steps
1. Gaussian Filtering

2. Gradient calculation

3. Non-maximum suppression

4. Double threshold

5. Edge Tracking by Hysteresis

To calculate the gradient of a pixel the Sobel or Prewitt filters can be used. The Sobel
filter was developed by Irwin Sobel, Sobel & Feldman (1968). In applying the Sobel filter a
two kernel convolution takes place on a greyscale image, with the two kernels emphasising
vertical and horizontal edges separately. The magnitude of the directional gradients are
then calculated to provide a new pixel value, which will provide a white level, highlighting
a line. The Prewitt filter, created by Judith M. S. Prewitt, Prewitt (1970), is nearly identical
to the Sobel filter except that it does not weigh pixel values based on distance from the
kernel centre. This can reduce the intensity of an edge and make 1t less visible. Ahmed
(2018), noted that the Prewitt filter convolution was performed quicker than the Sobel filter
convolution, however the Sobel filter was able to better identify diagonal edges while being
slower but not significantly. The Sobel filters in the horizontal and vertical direction can

be seen below where G, gives the horizontal filter and G, the vertical filter

28

-1 01 -1 -2 -1

where the magnitude of the gradient can be given as G,

G = /G2 + G2

Additionally, as the gradient is now known the orientation of the pixel can be calculated

according to the formula:

0 = arctan(G,, G,)

Applying the Sobel filter produces an image output similar to figure 7

Figure 7. Sobel filtered image

In figure 7 it 1s possible to see that edges have been 1dentified within the images by ap-
plying a horizontal and vertical filter. However, there is still a lot of noise within the filtered
image and due to differences in gradients there are thicker and thinner whites lines in the
image. The variance in line thickness has the potential to affect object detection operations
such as contour detection through line imbalance, so is then a necessary step to adjust for
this. Non-maximum suppression can be used to remove lines with weaker gradient intensi-
ties, leaving only pixels with stronger white value intensities and therefore stronger edges.

Consider an edge that 1s orientated horizontal and consists of three values. To calculate the

29

centre pixel value, each pixel value directly after and before the centre 1s considered. If
the centre pixel value intensity is greater that its neighbouring pixels in the same edge, the
pixel value 1s preserved, if the value is smaller than either neighbouring pixel, the value is

set as zero and removed from the edge. This technique can be demonstrated below.

[21[] 40 20] =¥ {210 0 20}

After applying the non-maximum filtering, the thickness of edges are reduced which
makes the image clearer, this can be seen in figure 8, however there exists some broken
edges that can be improved by applying a thresholding operation. A classic threshold oper-
ation involves taking a single threshold value and utilising this to produce a binary output.
In a greyscale image, a threshold value of 200 will ensure all pixels with a value lower than
200 become 0 and all pixels with a value greater than 200 become 1. After non-maximum
filtering, multi level thresholding 1s applied. Multi-level thresholding separates strong pixel
intensities, weak pixel intensities and weaker pixel intensities, where strong pixels greatly
contribute to an edge, weak pixels contribute in some form to an edge and weaker pixels
can be considered unnecessary noise in edge detection. The threshold levels in multi-level
thresholding are arbitrary but will feature a high and low level threshold, with all pixel val-
ues over the higher threshold equal to 1, all pixel between the higher and lower threshold
will have a value equal to where 0 < = < 1 and all pixels below the lowest threshold will

be equal to 0.

Figure 8: Non-maximum suppression

30

The Final step in Canny edge detection is to apply edge Tracking by hysteresis. Previous
attempts to reduce image noise may cause edges to be broken and incomplete, edge tracking
by hysteresis attempts to reconnect broken edges through image convolution where a kernel
1s passed over the image, the centre of kernel 1s compared to the kernel neighbourhood, 1f
the neighbourhood contains at least 1 strong pixel intensity the centre pixel is adjusted to
the maximum intensity. If the kernel neighbourhood contains no strong pixel intensities the
centre pixel is unchanged. Once these two additional steps are preformed, the Canny edge

detection 1s complete, this can be seen in figure 9

Figure 9: Canny edge image

4.1.7 Image contours

A contour can be defined as a curve that joins a collection of identical points by pixel inten-
sity, such as all white pixels with the value 1. Edge detection differs from contour detection
slightly, the purpose of edge detection is to identify edges visually and preform a threshold
operation that binarizes the edges, not returning the position, shape or size of an edge. A
contour operation exists to detect a curve based on the location of a collection of contin-
uous identical pixels. After edge detection is applied contour detection will detect edges
and provide the location, size, and hierarchical information of the edge. Contours are of-
ten used in object detection operations and can be useful when trying to determine a shape
type, area, parameter or order. OpenCV provides access to a single contour detection algo-
rithm, the Suzuki contour detection algorithm proposed by Suzuki et al. (1985), and while

many algorithms such as Moore Boundary tracing and Square tracing exist, the project in

31

this document applies the OpenCV library exclusively for computer vision, therefore it is
not necessary to expand on further work. Suzuki et al. (1985) proposed two algorithms for
contour detection. These algorithms are image convolution operations that involve passing
a kernel across an image to identify outer and internal boundaries of an image, addition-
ally the order of each contour with respect to the contour’s immediate parent contour is
recorded, providing the contour’s external boundary. Both the outer and inner boundary
kernel can be seen below

COTNfOUTmatrm = |:|I’Cj:|
Outer boundary kernel (OB) [U 1] Inner boundary kernel (I1B) {1 U]
Contour = C|

The first step in contour operation is to pass OB through an image from left to right, at
this point the count of the external boundary E B is given as B = 1 where the only know
external boundaries are the sides of the full image and are therefore the largest external
boundary. Where OB > 1, this is the position of the first outer boundary and the count of

the external boundaries is now:
FB+1=FB=1+4+1=2

The OB kernel then continues right until OB = 0, all the preceding pixels to this point
are identified as the second contour, where C;, = EN B. Moving through the image at the
next observed pixel (z,y) if (z,y) > 1and (x4, y) = 0, also if (x,y) is within the width of
Cy, (z,y) itis now a internal boundary (/INB)and (/INB = —-ENB—1) = (INB = -3).
This process continues until all internal contours are identified. Ifthe observed (x.y) is equal

t0 Co(Zmin, y) OF Co(Tpmax, y) it is included as a continuous point in the contour Cs.

As previously discussed, understanding the geometry of a contour is extremely useful
in certain applications. Poda & Qirici (2018) applied contour detection and identification
in determination of a polygon shape. Additionally, contours are extremely adaptable to
project requirements and the Ramer-Douglas-Peucker algorithm is a useful technique to
improve object detection with contouring, by assisting in changing the characteristics of a

closed polyline which results in different polygons.

32

Ramer-Douglas-Peucker algorithm

The algorithm suggested in 1973 by Douglas & Peucker (1973) can be applied to change
the characteristic of a continuous polyline, such as a contour. The algorithm considers the
design of the polyline a construct of many smaller polylines. The algorithm’s object is to
iterate over known points on the line and attempt to remove some points and their connec-
tion to the original polyline without breaking the line connection from the starting point to
the finish. Removing points from the line changes the shape and characteristics of the poly-
line, applying this to a contour that is a polygon will change the polygon dimensions. The
algorithm’s degree of change is decided by an arbitrary value e. Considering an example

line below, where € = 0.5.

Y

A(2,2)

T

Firstly a temporary line joins the start and end point, given by line AD in the above
example Next the furthest point from line AD is identified which is B. As the distance be-
tween AD and B is greater than 0.5 the polyline is broken down into two separate polylines
AB and BCD. There are no points between the line AB and therefore this cannot be de-
constructed. Moving to the next line BC' D there 1s 1 point C' between BC'D. The distance
between point C' and the line BD is less that € and therefore the point can be ignored. The

new polyline AB Dcan be seen below.

33

(2.6,4)

A(2,2) D(6,2)

4.1.8 Histogram equalization

Image contrast plays a pivotal role in object detection and identification. Contrast in an
image can be defined as the variance between pixel colours which results from a variance
in luminosity. In an image with poor contrast it can be difficult to distinguish features
such as edges, as pixel values are grouped closely together and not distributed uniformly.
Histogram equalisation exists to improve contrast in images by attempting to ensure the

uniform distribution of pixel values along the dynamic greyscale range, from 0 to 255.

Figure 10: Original image (left) and global histogram equalised image (right)
OpenCV (2021)

It is clearly visible from figure 10 that balancing out the pixels along the dynamic range
helps to improve the detection of both background and foreground objects. Histogram

equalisation can broadly be divided into two methods:

34

1. Global histogram equalisation

2. Local histogram equalisation

Global histogram equalisation
Global histogram equalisation takes a histogram created of the whole image, with the fre-
quency of pixel occurrence known, the known probability of pixels occurring across an
image is utilised to create an image transformation criterion where pixel values are uni-
formly distributed across the full dynamic greyscale range from 0 to 255, which can be
seen in figure 10. To apply global histogram equalisation it is first necessary to compute
the image histogram. The number of histogram buckets range from o to L where L = 256
and each bucket is uniformly spaced as to capture every possible level of pixel intensity.
Each pixel f(z,y) is placed into a single bucket and the sum of any one bucket h; can be

given mathematically as:
255

W H
hi = {
22N
Where w is the image width, h is the image height and 0 to 255 is the maximum dynamic
range of an image. Next the cumulative distribution function of the histogram must be

calculated, given as:

CDF, =Y "k,

The pixel intensity transformation for any given pixel can then be determined as:

f() . (CDF; - CDFm.in
YUY =\ (WzH) = CDFpim

)xL—l

where CDF,,;, 1s the cumulative frequency of the first non zero pixel value. By ap-
plying this transformation to all pixels values in the original image the image is now trans-

formed, as can be seen in figure 10.

Local histogram equalisation

One problem with global histogram equalisation is the presence of noise. Small concen-
trated areas of noise in an image will contribute significantly to the CDF of the final output
image. Local histogram equalisation 1s a solution that breaks down an image into multiple
smaller histograms, determining a pixel intensity transformation based on the isolated his-

togram and then merging the results into one image. The benefit of this technique is that it

35

isolates the small areas of concentrated noise and uniformly distributes the intensity values
over a smaller range of pixels, reducing the effect of noise compared to global histogram

equalisation.

Contrast limiting equalisation

Contrast limiting is an additional step that can be taken to improve effectiveness of lo-
cal histogram equalisation. Contrast limiting very simply, sets a minimum and maximum
value for image intensities before the CDF transformation is calculated. Aarthy & Sumathy
(2014) noted that local contrast limiting histogram equalisation preformed extremely well
compared to other histogram equalisation techniques, however 1t was noted that a consid-
erable disadvantage of the technique is speed of computation, which can be a significant
disadvantage 1n large image processing or real time operations. Paul & Aslan (2021) was
able to successfully apply contrast limiting histogram equalisation in a real-time face de-
tection program but with low resolution images. This may indicate that while effective,
contrast limiting histogram equalisation may only be used in applications which utilise low

resolution imagery or poorer hardware.

4.2 Artificial intelligence

Artificial intelligence (Al) is simply the ability for a machine to perform an action intel-
ligently, where intelligence is defined by a human standard of intelligence and a machine
can therefore be seen to perform an action to the standard surpassing or equaling the ability
of a human. AI’s use in zero sum games is a popular area of study among academics and
countless publications have focused on the role of Al in chess. A zero sum game can be
defined as a competitive game played by two or more players where the sum from the re-
ward for winning is proportionate to the sum of the loss from losing. Translating this into a
draughts game played by two players, there is a 1:1 payout ratio where if a player takes an
opposition piece they increase their total pieces while reducing the opposition’s total pieces.
Implementations of Al in zero sum games utilise tree search algorithms to find an optimal
move that maximises the player’s reward while minimizing the opposition’s reward, the

most common technique is Alpha-Beta pruning.

36

S Design

This chapter documents the design of the computer vision project to be undertaken. Specif-
ically some key concepts relating to the design of the systems, project requirements and
methodologies employed. This section also provide an overview of quality controls adopted

to ensure the project output is aligned to the requirements of this project.

5.1 The rules of English Draughts

Internationally English Draughts can be seen as a variation of the classical game Chequers,
which is also known in the Americas as checkers. Like chess, the game is played on a 8x8
gameboard, with two players and sixty-four evenly sized game squares separated into two
distinct colours, with two sets of counters of different colours. Unlike chess, each set of
counters are homogeneous with each other, where there exist only one type of counter, a
draught, that is coloured classically either brown or white, red or black, black or white but
there are also many alternative variations available.

Draughts, as previously mentioned, is a zero sum game where the objective of any player
is to take as many opposition pieces as possible while minimizing the number of owned
pieces that are taken by the opposition player. Each player in the game is bound by the
sames rules that govern all aspects of the game, meaning each player can move and take
opposition pieces in exactly the same manner with no deviation in rules based on colour of
a draught.

In a game a draught can represent either a man or a king. In classical draughts a man
1s a single draught while a king is represented by two draughts stacked on top of each
other, though within this project an alternative approach is taken which is detailed in the
implementation section of this project.

Each player starts the game with 12 draughts, columns in the gameboard are positioned from
one to eight and from left to right. The first draught of each player is positioned in column
one in the first row that faces the player, the next draughts are then placed by alternating
between skipping a square and then placing a draught in a square until twelve draughts are

placed between three rows for each player as can be seen in the figure 11 below.

37

Figure 11: English Draughts game

A draught dedicated as a "man”, may move one space diagonally in the direction of
their opponent’s starting line, the first row facing the opponent. A man cannot move back-
wards towards the player’s starting line or in any other direction. The single objective of the
game is to “take” an opponent’s draught, this involves the player’s draught jumping over
the opponent’s draught and removing it from the gameboard. Once all of the opponent’s
draughts are removed from the board or the opponent is unable to make a move the player
wins, conversely, if all of the player’s draughts are removed from the board or the player is
unable to make a move the opponent wins. In cases where there are no further moves avail-
able to either player, a draw 1s decided. A player can take an opponent’s draught, both man
or king if, an opponent’s draught is positioned diagonally adjacent to the player’s draught,
the opponent’s draught is between the opponent’s starting line and the player’s draught and
finally, if there is an unoccupied adjacent square that is diagonally behind the opponent’s
draught that lies in the direction of a diagonal move by the player. If either an opposition
draught or the player’s draught blocks a diagonal move behind the opposition’s draught,
then the move is not possible. In cases where a player takes an opponent’s draught and
from this new position is then able to take another opponent’s draught they must do so,
even if it puts the player into a position of disadvantage, the player must continue to take
the opponent’s draughts until there exists no further available moves.

When a player’s draught reaches the starting line of the opposition it becomes a king. The
king is crowned by placing a draught on top of the original draught. The draught must

wait a turn before moving before it is able to move. A king differs to a man as a king may

38

move in any diagonal direction either forward or backwards by one place. The king may
also take an opponent’s man or king in any diagonal direction. Apart from the direction of

movement, the king then functions like a man and is bound by the same rules.

Game alterations

While this project follows the same game rules as English Draughts in the game-logic, 4
separate coloured counters are used represent player man, opposition man, player king and
opposition king. This is due to two reasons. Firstly, the supplied counters with the board
have similar colour patterns as squares on the board and when subjected to different light
levels, may affect the accuracy of proposed computer vision process. Finally, as this project
identifies counters by colour it will be impossible to segregate counters representing men
and counter representing kings. It is therefore mandatory to replace the original counters

for this game.

5.2 Agile methodology

This project documented in this work takes an agile approach to project implementation.
An agile approach takes a large project and breaks it down into sub-components, for each
component a sprint 1s completed. A sprint can usually be deconstructed into a planning
stage, design stage, implementation stage and a testing stage with a final review. A team
applying agile in their project are able to provide a value added benefit to their end customer
a lot quicker than if applying other methodologies such as waterfall project management.
After each sprint a working element of a project is designed, providing value for the cus-
tomer. With each consecutive sprint, additional functionality is provided to the current
project, continually improving a project by delivering early and often, unlike a waterfall
model. The design of the end system produced in this project is built by combining a series
of smaller processes and functions, it is then sensible to adopt an agile framework as the
project can be divided into many smaller tasks, making the benefits of working with an
agile framework extremely obtainable.

The choice of an agile project framework is in line with reference to other works. Wu et al.
(2019) applied an agile project framework in the implementation of facial tracking com-
puter vision project which was assisted by CNN deep learning. Wu et al. (2019) praised the
flexibility an agile project frameworks offers to large computer vision projects with many

components.

39

5.3 Project design

The key sections of this project are, computer vision, system logic and NAO hardware. This
structure can be witnessed in Appendix A 4 which contains the file structure of this project.
This project takes an object orientated approach to design, with the project design being
flexible and agile, allowing easy scalability for future work and clear visibility in source
code. Appendix A.3 provides an overview of the process stages in playing a draughts game
which also includes details of all key actors, their responsibilities and functions within de-
livering the game with NAO.

Reviewing figure 12, this project will first acquire an image using the integrated camera
on the NAO unit. Next the project will apply some image processing techniques includ-
ing: imaging resizing, gamma correction and Gaussian blurring to prepare the image for
object detection. Next the project will apply Canny edge detection and contour detection to
identify the boundaries of the gameboard object and the four boarding corners of the game-
board. Next a projective transformation will be applied to provide an aerial view of the
gameboard exclusively. The image will then be partitioned into sixty-four evenly spaced
smaller images which will be contained in a list, each image representing a square in the
gameboard. A loop will then run through the list objects and apply thresholding to detect
the highest white pixel count based on iterations through known RGB ranges of pixel values
for draughts. The output of this operation will be a NumPy 2-D array of classified counters
and their location within the board, this array will then be used as input into the draught’s

game logic and Al processes.

40

Key process pipeline of game turn

Image aquisition by NAO robot

Image resize

Gamma correction

Gaussian blurring

Canny edge detection

Contour detecion

G board corner d

Image projective transformation

uonoalp Buissasoig

Conirast limit equalisation

Image separation and subplot

Thresholding and game counter detection

Game board array generation

[Movement detection

l Movement validation

[Optimal move selection

Figure 12: Project pipeline

NAO Specification
The NAO robot used in this project is the fourth version produced by Soft Bank Robotics.
The utilised features of the NAO include its cameras and head joint functionality. This
designed version of the robot included two cameras, one positioned on the forehead of the
robot and the second is positioned directly on the chin of the robot, the exact locations can
be seen figure 13. One considered weakness of the robot is the resolution of each of the
cameras, the maximum resolution of each camera is 1280x960 which is extremely under-
powered compared to classic computer vision projects that apply cameras with a much
higher output resolution. Images with a greater count of pixels contain more details and
make object detection clearer when applying operations such as corner detection or Canny
edge detection. However, the clearer benefit of a lower resolution camera is quicker im-
age processing due to a smaller image size, however due to a limitation in pixels, this may
present more opportunity for noise disturbance. In addition to the cameras, the NAO robot
makes use of joints and actuators that provide pitch and yaw functionality to the degrees of
freedom specified in figure 13. The robot will apply head re-positioning in the image ac-

quisition phase to ensure the entirety of the gameboard is captured in the processing image.

41

Minimising image computation time 1s an essential step when using the NAO hardware as
the NAO only benefits from a 1.6GHz Intel Atom z530. The only computation expenses of
the NAO robot will be however, the initial image capture, head re-positioning and provid-
ing speech commands. The additionally computational burden will fall upon the additional
system used in this project which houses a 2.70GHz 4 core Intel(R) Core(TM) 17-6820HK
CPU and 16GB of on-board memory.

63.64

Figure 13: NAO head and camera positioning

Evaluation

Considering the hypothesis statement of this work, "It is a viable application to utilise NAO
robotics and computer vision, unsupported by machine learning, in detection and placement
of the counters in the game draughts”, a viable solution for object detection in computer
vision can arguably be a solution that is efficient in terms of speed of processing and accu-
rate in object classification from detection. Additionally, this project also includes a third
element of consideration which is the accuracy and validity of move allocation in the game
of draughts. As this project is primarily focused on delivering a “viable” computer vision
solution for detection of game pieces and the game board, it is not mandatory to consider
the correctness of game logic as this is a secondary consideration and if the NAO robot
computer vision approach is assumed satisfactory, developing a better or more complex Al
system for move decision and validation 1s trivial for those wishing to replicate the work.
However for completeness, a secondary evaluation criterion is assigned for the critiquing
of optimal move logic.

Primary targets for this project have been considered with regards to academic publica-

tions to ensure competitiveness and robustness from the proposed computer vision solution.

42

Time taken for the processes of image acquisition, image processing and gameboard array
generation will be measured against a key performance indicator (KPI) of 10 seconds. This
is inline with Li et al. (2019) that implements a body position identification system with a
CNN deep learning position identification system, that achieved a three second processing
time. Unlike a CNN model, the image processing in this project utilises no training mod-
els and therefore, benefits from a time saving in project setup and initiation, justifying the
slightly more lenient time KPI. In a subjective view, it is also acceptable to wait 10 seconds
to detect a gameboard and play a move, in a game that at late stages is played exponentially
slower.

Another primary KPI target for this project is accuracy in detection of game board coun-
ters. The KPI target for this will be to maintain an average counter classification accuracy
of 85%. This target is constructed in accordance with the work published by Wolflein &
Arandjelovi¢ (2021), who were able to achieve a classification accuracy of 90% of chess
pieces Iin a game utilising a CNN deep learning model, making 85% within an acceptable
accuracy for classification. Finally this project will establish a secondary objective of main-
taining an average optimal move decision accuracy of 90%, an optimal move being defined
as a move that maximises the amount of player draughts taken in any one move by the Al
As the decision of optimal moves is not a reflection of computer vision, the arbitrary target
of 90% will reflect a strong prototype system that, if assuming computer vision KPIs are
met, would provide a clear foundation for further interesting work in optimising Al logic.

Testing

As this project has followed an agile delivery methodology testing has be at the heart of all
produced work. In each sprint cycle testing has been employed to ensure work to quality
standard. The main methods of testing employed consisted of individual unit testing when
deploying new software and black box testing in the test phase after sprint implementation.

These testing solutions proved critical in delivering the final end solution.

6 Implementation

6.1 Nao image acquisition

To enable the NAO robot to acquire an image of the gameboard and game counters a con-
nection from the host machine must be established to the robot by a WiFi connection. Next

the robot must be positioned in close proximity to the board. Additionally, as the robot is

43

elevated over the board, the actuators in the unit head must be adjusted on the pitch and

yaw axis to allow the robot to focus onto the board. This can be seen in figure 14 below.

Figure 14: NAO robot game positioning

In applying the specified functionality to the NAO unit a developer has the option of
using the Choregraphe suite, which is software designed by SBR to allow non technical
users to build a timeline process of actions to be preformed by NAO through clicking and
dragging premade objects and functions into a timeline class that is activated at the click of
a button. Choregraphe also allows more advanced functionality by allowing custom source
code to be added to the timeline and activated. The alternative to Choregraphe, and the
solution adopted for this project, is to download the Python2 SDK that provides access
to the NAO modules and functionality through requesting access to a proxy server that
returns the specific modules and required module functions, as can be seen in figure 15
below. In this project there were four modules accessed through the proxy broker system:
”ALTracker”, ”JALMotion”, ”ALVideoDevice” and "ALTextToSpeech”. After placing the
NAO next to the board, the "ALMotion” module is accessed through the proxy and all
actuators in the NAO unit have torque limitation removed, ensuring maximum movement
speed. Next the "ALTracker” module is called and the, factory set, automatic facial tracking
system is deactivated to stop the NAO unit re-positing the head actuators if a face is detected
while focusing on the game board. Next, the head pitch is adjusted to 0° which directs the
NAO unit to face forward and the yaw is adjusted to 28.5° which directs NAO robot to
look down, the degrees of movement available to unit head can be seen in Appendix A.S.

Finally, module "ALVideoDevice” is accessed and an image 1s captured with the attached

44

camera modules which is then saved to the project directory.

Broker Modules Methods

—
Network

Figure 15: NAO API broker system
Soft Bank Robotics (2021a)

6.2 Image processing

The image acquired through the NAO unit is firstly resized using OpenCV resizing func-
tion from the native resolution of 480 x 640 to a 512 x 512 image and copy of the image is
created, which 1s an essential step for evenly dividing the projective transformed image in
later stages. Next the image is converted from BGR to greyscale using an OpenCV colour
conversion function, which applies an greyscale conversion by averaging. The converted
image then undergoes some gamma balancing, to help remove shadow areas and improve
contrast. Gamma can simply be defined as the overall brightness within the image, where
by an image with high gamma has many pixels with an average value close to 255 or con-
versely, has many pixels with values close to 1. Due to the positioning of the NAO robot,
the gameboard edge the furthest distance away from the robot can suffer from increased
shadow and additionally, so can game pieces positioned at distance to the robot. To adjust
for low gamma pixels, pixels with a greyscale value of 0.65 or below were modified to 1.
Image results can be seen in figure 16, it is clear that after gamma correction the shadow is

removed from the board edge.

45

Figure 16: Left: image before gamma correction. Right: image after gamma correction

As the camera module attached to the NAO unit is only capable of low resolution im-
ages, noise 1s a particularly large problem for imagine processing. A 5 x 5 Gaussian blur
kernel convolution operations was applied to the image. Looking at figure 17, the game
board before the Gaussian blur was applied has excessive noise which can be seen in the
empty white game squares. There also seems to be some salt and pepper noise across the
entire image, which is likely to have been caused by the poor quality camera sensors. After
Looking at the image after Gaussian blurring it is clear to see that the majority of noise has
been removed from the white game squares , reducing the likelihood of incorrect identifi-
cation of game counter and additionally, the presence of salt and pepper noise across the

image is reduced.

Figure 17: Left: image before Gaussian blurring. Right: image after Gaussian blurring

Canny edge detection was then applied to threshold the greyscale image and outline

edges. The optimal value for the maximum and minimum intensity gradients used within

46

the algorithm where trialled with many variations, which can be witnessed in Figure 18.
Ultimately, it was a minimum intensity gradient of 95 and a maximum intensity gradient
of 290 that was the optimal combination. It can be seen that the border of the gameboard
is clearly defined and the edges that are contained within the board are ignored at this
minimum and maximum value, which 1s required for further image processing steps. In
Canny edge detection with lesser maximum values there is significant edge detection inside
the gameboard that looks to be caused by noise. At higher maximum values, the definition

of the gameboard borders are reduced.

Figure 18: From left: gradient(Min:95 Max:100), gradient(Min:95 Max:190),
gradient(Min:95 Max:290), gradient(Min:95 Max:390)

Next contours are detected from the image adjusted by Canny edge detection and poly-
gon approximation 1s applied. An array of all contour points is returned, looping through
each list of points, the contour is polygon approximated by a factor of 1%, this produced
the most accurate points for the outline of the gameboard. The approximated points have
been drawn onto the image in Figure 19 below. As the object of game board detection 1s

to find the corner points of the board, for each set of polygon points that contain four or

47

more points a gameboard top left point, top right point, bottom left and bottom point is
established. This is done by first finding the bottom right corner and the top left corner,

where the criteria for the bottom right corner is:

max » (z +y)

And conversely, the location of the top left corner is given by the criteria:

min Z(m +y)

The remaining corner points are then calculated by finding the points furthest away from
the other reference points within a acceptable deviation, which is given as 80 pixels. To
determine the optimal corner points for the gameboard from the lists of new potential cor-
ners, the area between the suggested points 1s then calculated. If the area is between 25000
and 70000 pixels 1t is likely to be the corners of the game board, any small or large objects

are then ignored. The optimal points are then returned as a list.

Figure 19: Poly approximated contours

Next a transformation matrix is calculated using OpenCV getPerspectiveTransform()
which requires the dimensions of the original image and the new dimension which are
the corner locations of the gameboard. The matrix is then used to calculate the image
warp, with the final result providing and aerial view of the gameboard. Next the image is
equalised using local contrast limiting equalisation and the image 1s also cropped to remove
the gameboard borders. This leaves only an image of all the game squares. The products

of these processes can be seen in figure 20.

48

Figure 20: From Left: No image equalisation, image equalised and board bezel removed

Finally the transformed gameboard image is divided into 64 sub images and collected
in a list. The list is then looped through, with each iteration, an additional sub-loop loops
through know HSV ranges for game counter colours and applies a threshold operation to
the image. To filter out noise, if an image contains 143 or more white pixels a counter
should be located in the image. Additionally, if a image contains 3,481 or more pixels, the
game piece is considered undefined as this 1s likely to be caused by a luminosity variance.
Additionally, an erosion operation followed by a dilation operation is applied with a 5x5
kernel, this is to remove small amounts of isolated noise. When changing the HSV ranges
if the count of white pixels in the image is the greatest, the image and the game square is
considered occupied by a counter. A NumPy arrays is created to store the location of the
counters and the counter type. An image of a virtual gameboard is then created based on the
NumPy array and the arrays becomes the input into draughts game logic. The final output

of the computer vision process can be seen in Figure 21.

QN O N

e
2
e
8
e
s |
8
|

Q= 0D
=00 DN N
D= D=2 2MN

Figure 21: From Left: Counter detection, rendered virtual gameboard, created NumPy
array

49

6.3 Draughts game logic

The game script is run from a main game loop. A game begins with the NAO robot cap-
turing an image. Image processing steps are then applied and the NumPy array and virtual
gameboard are generated that are the input into the game logic. The user then must validate
if the array generated is accurate, otherwise the process step is repeated. Next another image
of the gameboard and a new array, is generated with the NAO unit and compared against
the original NumPy array. To understand the available moves in the game, the function "get
valid moves”, calls the functions “traverse left” and “traverse right”, these two functions
use recursion and backtracking to find all available moves from a selected draught piece. A
visual of this code can be seen in Appendix A.6. Considering “traverse left” with a player
counter, the function begins by considering if a move is immediately available above and
diagonally left, where there is space or there exists an opponent counter. If there is space,
the function adds the position to a list of available moves, returns the list and backtracks,
next calling the “traverse right” function. If an opponent counter is located the function is
then called recursively to check if the next immediate space behind the opponent counter
1s occupied or available and this process continues until all the available moves are found.
The list of available moves is then looped through, if the new move location of the player’s
counter is found in the list of available moves the NAO robot verbally confirms this to the
player, if the move is invalid, the NAO robot also verbally confirms this to the player and
the cycle restarts until a valid move 1s played by the player.

When it is the computers turn to decide a move, the function ’get opp move” is called to
determine the best Al move. A list of all opponent counter locations is looped through,
each location is input into the “get valid moves” functions and list of available moves for
the corresponded piece is returned. Then an optimal move for the Al is decided based on
the maximum count of moves taking in one turn. For example, given the choice of moving
down to the next available space which is diagonally left and immediately below the oppo-
sition counter, or making two moves by moving diagonally right and moving the counter to
two places by taking 2 player counters, the latter options will be chosen. In the case where
the Al has the choice of moving only one space, left or right diagonally, the optimal move
will be decided based on the number of rows moved, as more rows moved signifies the Al
has taken a player counter. This code can be seen in Appendix A.7. The NAO robot then
verbally instructs the player to move the opponent counter, once move the player confirms

the move 1s complete and a new image of the board is taken to ensure the correct move-

50

ment. If the move is performed incorrectly the NAO robot re-instructs the player and cycle
repeats, if the move is correct NAO robot verbally confirms this with the player and the
player’s turn process begins. When there are no available moves by either side or the count

of counters is 0, the game ends.

7 Results

This section of work provides overview of the results obtained by the composed computer
vision system and draughts game logic. The results are also measured against the KPI

targets established in the project design.

7.1 Processing times

The key measure of success in this project lies balanced between the image process times
and image classification accuracy. A sample of observed processing times were recorded
from two different start points in the computer vision process. Firstly, the time taken to
connect to the NAO robot by wifi connection, generate a new image of the gameboard,
process the image and detect the board and the location of game counters and finally return
the computer NumPy array. In addition to this, the time taken from processing the image and
generating the NumPy array exclusively was also recorded. The results of these observation

can be seen in figure 22 below.

51

Time taken (seconds)
P
—

W R NN

0 10 20 30
Observations

® Total time for processing and image capture @ Total time for processing

Figure 22: Time taken to complete computer vision processes

Looking at the results in figure 22 to it possible to see a series of interesting results.
Firstly, observing the time taken exclusively for processing it can be seen that process times
are consistent for the majority of observations, in most cases being close 8 seconds or less to
load the image object, process it, detect board corner, identify the counter types and return
the created NumPy array. However, closer to the end of the observations a sharp spike in
increased processing times are noticed, with times taking in excess of 30 seconds and in one
observation over 35 seconds. When measuring these processes, natural light in the room
was suddenly reduced due to a change in the time of day, this changed the contrast and
luminosity levels within the room, the position of the shadow cast be the NAO robot also
changed compared to the previous observations. This affected the ability of the computer
vision to find the board game corners. In the final observation, light levels changed to match
the original conditions in the room and observed results were closed to early observations.
The total time from connection to the NAO unit, image acquisition, image system upload,
computer vision processing and NumPy array generation was also measured, which can
be seen as the full computer vision process from input to output. The documented results
are slightly sporadic, where in some observation there is little to no deviation from the

total processing times, in other cases there exists much larger deviations in time taken to

52

complete the full process from image collection to array output. A majority of these time
deviation were caused by connectivity issues with the NAOqi API system, making the
camera functionality inaccessible on the NAO unit. Additionally, using the python SDK
it was noticed that some module functionality can be inconsistent, for example, the NAO
robot may adjust the actuators in the head outside the angles specified by the written python
script due connectivity issues. This in turn, caused images to be taken by the robot when
the camera was not positioned correctly and the board could not be observed. Overall,
these occurrences has a significant affect on the average time taken for the majority of
observations. The average time taking in the process operations exclusively was 10.79
seconds and if the outliers, caused by the sudden natural light level changed, are ignored an
average time of 9.1 seconds 1s achieved in processing. This time is below the KPI target set
of 10 seconds or above the KPI target of 10 seconds if outliers are included. The average
time taken for the complete process from image acquisition to array generation was 12.43
seconds, it can be seen that the total time take for the aggregate process was on average,
1.63 seconds slower than just the image processing stage alone. Based on the sample data,
there exists a 20% probability that a time of processing exclusively is observed of over 10
seconds. There is also a probability of 40% that the time taken to connect to the NAO,

acquire the image, process the image and return the NumPy array 1s over 10 seconds.

7.2 Image classification

In measuring the accuracy of classification of draughts through computer vision, the counter
classification algorithm was run 60 times with the accuracy measured in percentage of
game squares identified correctly, meaning the generated NumPy array correctly maps the
gameboard envisioned with the location of every counter, counter type and empty space
correctly. The first 30 observations in this work use only the player and opposition draught
and exclude the king counters. Additionally, to test the robustness of this process, the
gameboard was moved by small increments and positions of draughts on the board were

moved.

50

@ Accuracy Score @Moving Average

i N\ | [T /_\ﬂ

0.9

/\.-." il | iyt

0.6

Board squares accurately classified

o
[

04

0 10 20 30 40 50 60
Observations

Figure 23: Measure of image classification accuracy

Looking at figure 23 it is possible to see there is extreme volatility in the accuracy mea-
sures collected. There are large peaks in accuracy followed by troughs. Interestingly in
most cases, the results are either completely accurate or close to an accuracy of 60%. In
the measurement process only 24 counters were ever on the gameboard at anyone time,
the 60% scores can be attributed to this, no counters were identified and the algorithm as-
sumed all squares were vacant. Looking at the count of observations with an accuracy
close to 60% is evident that an empty gameboard was visualised many times by the com-
puter vision algorithm. However, there is a single score below 40% which indicates cases
where empty squares and counters are identified incorrectly where nearly non-existence.
In processing each image, there were a significant amount of times when the NAO robot
would position the camera module at an angle unspecified by the script and the position
of the gameboard as well as surface reflections on the game counters would change in the
captured image. Additionally, there were changes in light levels throughout the measuring
process that may have contributed to significantly to accuracy scores. The majority of ob-
servations did however accurately identify all game counter types and locations as well as

the locations of empty squares. Overall an average accuracy of 83% was obtained in gen-

54

erating the NumPy array from the gameboard image. This result fails to exceed or equal

the target KPI of 85% in image classification.

7.3 Game logic

The game logic was measured by defining the best move, which is the move that maximises
the number of pieces than can be taken in one turn, measured over 5 separate games. No-
ticeably, the Al chooses a move that does maximise the number of player counters obtained
in a move. When there is the option to take a player counter or two player counters, the Al
will always chooses the latter move that maximises the number of taken counters. The Al
i1s not intelligent however and will often move an opposition counter to a space that makes
it directly obtainable on the next turn by the player. Additionally, the Al moves become
easily predictable as when all available moves are evenly scored, the Al will always move
to the next available draught that is closest to the maximum boundary of the gameboard.
However the rules of English Draughts is still maintained, as the Al confided to the rules
with 100% accuracy and will take all player counters immediately available to them. A
optimal move obtainment rate as defined by criteria established above is 100%. This is

10% better than the KPI target of 90% accuracy.

8 Evaluation

In this section the results from the implementation of the proposed system are considered
with a key focus on computation cost, efficiency and feasibly. With the support of aca-
demics references, it possible to test these key considerations to enable confirmation or re-
ject of the hypothesis statement, given as, it is a viable application to utilise NAO robotics
and computer vision, unsupported by machine learning, in detection and placement of the

counters in the game draughts”.

8.1 Is the proposed system viable?

Firstly considering the main objectives of this work, which was to obtain a computer vision
system that is “viable”, not optimal, to play the game of draughts using the camera mod-
ule equipped to the NAO unit. The obtained accuracy in determining the correct type of
counter in a game square and the location of unoccupied squares was close to the desired

KPI accuracy, competitively set according to similar academic work, of 85%, falling short

30

with an obtained accuracy of 83% due mainly to inconsistency with the NAO unit and the
positioned angle of the head actuators and the additional problems due to light variance.
The accuracy of classification could likely be improved by further optimisation of the com-
puter vision algorithms, which would could be tailored to a specific scenario where there
are fixed conditions in terms of light, NAO location to the board or a stationary camera.
Such scenarios are likely to be rare to find and in most cases it is both more flexible and
convenient to apply a computer vision solutions that has a greater level of versatility, such
as a system supported by machine learning. Considering that NAO benefits from having a
large range of movement which makes it extremely desirable for projects involving robots
compared to other alternative robots that are more specialised and limited, applications in-
volving NAO need to be versatile and adaptable. However, it is not prudent to consider the
proposed system in this work irrelevant for classification and object detection operations.
The OpenCV framework and concepts applied in this computer vision solution are very low
level and accessible to many new and inspiring programmers. Making improvements to the
proposed system should be easy given time, which is not a benefit of alternative computer
vision systems that use complicated CNN solutions.

This approach is extremely viable with consideration to time constraints, A CNN solution
for example would require a significant proportion of time spent on training the system in
various light conditions, especially when we consider a board could be rotated, there may
be many shadows, sensor interference or surface reflection which required further training
time to account for. In the solution proposed it takes a matter of moments to load a live
camera feed with a slider tool to adjust attributes such as threshold levels, gamma correc-
tion, canny edge detection boundaries and many more features to enable improved image
detection and classification. There is however a noticeable weakness with consideration
for time. The system proposed had an average image processing time of 10.79 seconds
which fell just outside of the KPI target of 10 seconds, which is again established based on
literature. When also factoring in problems with image acquisition through NAO, the total
time taken between image acquisition and generation of the NumPy array, which contains
the gameboard positions, 1s on average 12.43 seconds. This 1s worryingly long when we
consider Li et al. (2019) was able to process an image in 3 seconds with a CNN.

When the proposed computer vision solution 1s combined with the proposed game logic
there exists a game of draughts which provides an available opponent, that follows the
rules and will take the player’s counters whenever possible, 100% of the time. The Al is not

however, an intelligent or intimidating opposition and would not prove to be a formidable

56

opponent. This however could be easily changed with work to integrate Alpha-Beta pruning
for a more intelligent and engaging opponent. This is definitely an afterthought however,
as it is a more exciting prospect to understand the capabilities of NAO and the easily ac-
cessible computer vision algorithms and libraries that exist, which can be used to create
interesting and diverse work that is centred on NAO, an exciting form of technology. It is
worth noting that using NAO has induced much challenge. The API proxy system is not
easy to understand or use with Python. There is little to no documentation available online
that demonstrates the basic functionality of NAO programmed with Python, but for pro-
gramming with C++ there is a reasonable amount of documentation to follow, potentially
outlining why full documented processes of NAO programming implemented with Python
are rare to find. Additionally, the fact that the NAO Python SDK can only be used with
Python2 does also reduce the amount of opportunities to integrate new technology from
Python3 modules or future modules. Issues with consistency may be the key consideration
with using NAQ, the API does occasionally fail to call correct modules and connectivity is
an issue when using the API, compared to an offline solution. These potential issues could
cause programs to crash, making NAO not usable in any sensitive or essential processes,

which realistically is an unlikely application of NAO technology anyway.

8.2 System comparison to literature

The proposed system of this work does have several other benefits over similar work pro-
duced by academics. The choice to use computer vision to detect counters in draughts is
significant when compared to work such as that published by Kopets et al. (2020), who
used magnetised counters in a game of checkers. This technique is very restrictive if you
were to play with multiple opponents using different gameboard in one sitting or wish to
take the foundations of your work and apply it to other games. The proposed solution
in this document has a greater level of adaptability and the foundation available to a pro-
grammer that can be modified and applied in other games such as monopoly, tic tac toe,
battleships and many more popular games. Though there are certain limitations to this so-
lution. Wolflein & Arandjelovi¢ (2021) was able to provide real-time image processing
in determining the location and type of chess piece in a game of chess. This obtainment
even after much process optimisation would just not be possible for the solution proposed
in this work, the system foundation would certainly not be able to extend to games such

as chess, but is that really necessary. In addition Wolflein & Arandjelovi¢ (2021), many

57

academics such as Szemenyei & Estivill-Castro (2018) have explored complex CNN solu-
tions for computer vision which excluded the novice from replicating, when a key benefit
of NAO is accommodating easy and accessible code to introduce beginners to robotics, this
1s why Choregraphe software, produce by SBR, was released. With the solution identified
in this work there are clear benefits in building quick and eftective systems for small tasks,
many other academics appreciate this benefit too, such as Magallan-Ramirez et al. (2021)
who took a similar approach with the use of Canny edge detection in identifying a correct

path in a path-finding algorithm.

9 Conclusion and Further work

After reviewing the achieved results from the implementation and testing of the computer
vision solution suggested in this work the hypothesis statement can be considered proved.
This is because with a slight amount of optimisation, all KPI targets could be achieved, that
1S an accurate computer vision system that processes in a quick enough capacity to calcu-
late and instruct moves in the game of English Draughts with the potential to plan moves
intelligently all while using the NAO robot. However, the benefits of a NAO robot are not
in the ability to specialise in a single task but rather in the ability to adapt to be used in many
less complex tasks. Further work should be focused on reviewing the approach taken in this
document and optimising or altering the various process steps. It would then be extremely
interesting to see the new adjusted work compared directly to the results of a similar im-
plementation using CNN and the NAO robot. Why this may not be groundbreaking, the
NAO robot has demonstrated its capabilities as a useful and adaptable tool when applied
with computer vision. It is likely that through documenting more processes and creative
applications using NAO, an omission of usable guides to implement projects with NAO
will be quashed and a new generation of young programmers will provide growth to the
field of computer vision with the creation of a plethora of innovative solutions developed

with NAO.

References

Aarthy, M. & Sumathy, P. (2014), A comparison of histogram equalization method and
histogram expansion’, Int. J. Comput. Sci. Mob. Appl 2(3), 25-34.

58

Ahmed, A. S. (2018), ‘Comparative study among sobel, prewitt and canny edge detection

operators used in image processing’, J. Theor. Appl. Inf. Technol 96(19), 6517-6525.

Akarsu, B, Karakose, M., Parlak, K., Erhan, A. & Sarimaden, A. (2016), A fast and adap-
tive road defect detection approach using computer vision with real time implementa-
tion’, International Journal of Applied Mathematics Electronics and Computers (Special

Issue-1), 290-295.

Canny, J. (1986), ‘A computational approach to edge detection’, IEEE Transactions on

pattern analysis and machine intelligence (6), 679—-698.

Douglas, D. H. & Peucker, T. K. (1973), “Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature’, Carfographica: the inter-

national journal for geographic information and geovisualization 10(2), 112—122.
Grand View Research (2020), ‘Computer vision market size share report, 2020-2027".

Han, D. (2013), Comparison of commonly used image interpolation methods, in ‘Proceed-
ings of the 2nd International Conference on Computer Science and Electronics Engineer-
ing (ICCSEE 2013)°, Vol. 10.

IBM (2021), “What is computer vision’.

URL: https://www.ibm.com/topics/computer-vision

Jayasuriya, S. J., Sampson, A. S. & Buckler, M. B. (2017), ‘Reconfiguring the imaging

pipeline for computer vision’.

Karuppiah, P, Metalia, H. & George, K. (2018), Automation of a wheelchair mounted
robotic arm using computer vision interface, in 2018 IEEE International Instrumentation

and Measurement Technology Conference (I2ZMTC)’, pp. 1-5.

Khemasuwan, D., Sorensen, J. S. & Colt, H. G. (2020), ‘Artificial intelligence in pulmonary
medicine: computer vision, predictive model and covid-19°, European Respiratory Re-

view 29(157).

Kopets, E. E., Karimov, A. I, Kolev, G. Y., Scalera, L.. & Butusov, D. N. (2020), ‘Interactive

robot for playing russian checkers’, Robotics 9(4), 107.

Lewis, D. & Bailey, D. (2004), ‘A checkers playing robot’, Raport instytutowy, Institute of
Technology and Engineering, Institute of Information Sciences and Technology Massey

University .

39

L1, C., Imeokparia, E., Ketzner, M. & Tsahai, T. (2019), Teaching the nao robot to play
a human-robot interactive game, in 2019 International Conference on Computational

Science and Computational Intelligence (CSCI)’, IEEE, pp. 712-715.

Magallan-Ramirez, D., Rodriguez-Tirado, A., Martinez-Aguilar, J. D., Moreno-Garcia,
C. F,, Balderas, D. & Lopez-Caudana, E. O. (2021), ‘Implementation of nao robot maze

navigation based on computer vision and collaborative learning’.

Matuska, S., Hudec, R. & Benco, M. (2012), The comparison of cpu time consumption for
1mage processing algorithm in matlab and opencv, in 2012 ELEKTRO’, IEEE, pp. 75—
78.

Meng, L. (2019), Applying Reinforcement Learning with Monte Carlo Tree Search to The
Game of Draughts, PhD thesis.

Metz, A. (2021), “Pour one out for pepper, the world’s first humanoid robot, now "discon-
tinued”.
URL: htps://'www.techradar.com/uk/news/pour-one-out-for-pepper-the-worlds-first-

humanoid-robot-now-discontinued

OpenCV (2021), “Histograms equalization’. [Online; accessed August 16, 2021].
URL: https://docs.opencv.org/4.5.2/d5/daf tutorial ,ypistogram.qualization.html

Palekar, R. R, Parab, S. U., Parikh, D. P. & Kamble, V. N. (2017), Real time license plate
detection using opencv and tesseract, in 2017 International Conference on Communi-

cation and Signal Processing (ICCSP)’, pp. 2111-2115.

Paterson, J. & Aldabbagh, A. (2021), Gesture-controlled robotic arm utilizing opencyv, in
2021 3rd International Congress on Human-Computer Interaction, Optimization and

Robotic Applications (HORA)’, pp. 1-6.

Paul, K. C. & Aslan, S. (2021), ‘An improved real-time face recognition system at low
resolution based on local binary pattern histogram algorithm and clahe’, arXiv preprint
arXiv:2104.07234 .

Poda, X. & Qirici, O. (2018), ‘Shape detection and classification using opencv and arduino

uno.’, RTA-CSIT 2280, 128-36.

Prewitt, J. M. (1970), “‘Object enhancement and extraction’, Picture processing and Psy-

chopictorics 10(1), 15-19.

60

Shamsuddin, S., Ismail, L. 1., Yussof, H., Zahari, N. 1., Bahari, S., Hashim, H. & Jaffar,
A. (2011), Humanoid robot nao: Review of control and motion exploration, in 2011
IEEE international conference on Control System, Computing and Engineering’, IEEE,

pp. 511-516.

Sobel, I. & Feldman, G. (1968), “A 3x3 isotropic gradient operator for image processing’,
a talk at the Stanford Artificial Project in pp. 271-272.

Soft Bank Robotics (2021a), ‘Nao api framework’. [Online; accessed August 21, 2021].

URL: http://doc.aldebaran.com/1-14/dev/naoqgi/index. htmlthe-naogi-process

Soft Bank Robotics (20215), ‘Nao head rotation range’. [Online; accessed August 21,
2021].
URL: http://doc.aldebaran.com/2-1/family/robots/joints,.obot. html

Statista (2019), ‘Global robotics market revenue 2018-2025".

Suzuki, S. et al. (1985), “Topological structural analysis of digitized binary images by bor-

der following’, Computer vision, graphics, and image processing 30(1), 32—46.

Szemenyei, M. & Estivill-Castro, V. (2018), Real-time scene understanding using deep
neural networks for robocup spl, in ‘Robot World Cup’, Springer, pp. 96-108.

Wailflein, G. & Arandjelovi¢, O. (2021), ‘Determining chess game state from an image’,

Journal of Imaging 7(6), 94.

Wu, J., Wang, J. & Bai, Q. (2019), Design and research of intelligent idc computer room
based on agile model, in ‘2019 International Conference on Robots Intelligent System

(ICRIS)’, pp. 349-351.

Xia, C, Fu, L., Liu, Z,, Liu, H., Chen, L. & Liu, Y. (2018), ‘Aquatic toxic analysis by
monitoring fish behavior using computer vision: arecent progress’, Journal of toxicology

2018.

Xiaofeng, R. & Bo, L. (2012), ‘Discriminatively trained sparse code gradients for contour

detection’, Advances in neural information processing systems 25.

Yeotikar, S., Parimi, A. M. & Daseswar Rao, Y. V. (2016), Automation of end effector
guidance of robotic arm for dental implantation using computer vision, in ‘2016 IEEE
Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)’, pp. 84—
89.

61

A Appendix

Image Acquistion _l

Image
Enhancement

b

Feature Extraction <—

|

Classification <=

1
wesdordqng vonedepy

Figure A.1: Image processing pipeline
Akarsu et al. (2016)

62

250

209.38

200

150

100

Revenue in billion U.S. dollars

50

2018 2019 2020 2021 2022 2025

Figure A 2: Size of the global market for industrial and non-industrial robots between 2018
and 2025
Statista (2019)

63

auejuIMS $59201d Qwer) ¢y 231

.

= =

= =B ﬁ.!

(
[
. -
{UOM aures
uxusu_
Sap

2 A >G-S [==HEH= fwg
Ej=H{=l= igggig =

washs

paseq od Ajpnisnjoxg

@ - OB 04

64

File Structure

I

Main game loop

I

/ Nao functions

\ (Computer vision functions \

Draughts game functions

- IP: String
= PORT: Int

+ prepare_warp()
+sub_divide_gamequares()

+ showNaolmage()
+ main()
+ Nao_speech()

\+ Generate_robot_image()

+ Counter_type()

+ Shadow_remove()

+ Counter_type()

+ game_board_generation()

HeadPitch

/29.50‘ ‘ T .38.5°

\
N
\

Figure A.4: Project file structure

-119.5°

+ select_ai_level()

+ create_board()

+ create_virtual_board()
+update_board()

+ get_valid_moves()

+ traverse_left()

+ traverse_right()

+ get_valid_locations()
+ sorted_best_move()
+ pick_best()

+ get_opp_maove()

+ player_move()

+ game_win_opp()
+game_win_player()

+ find_new_move()
\\t Nao_select_move()

4

HeadYaw

p

’

/
AN

Figure A.5: NAO head rotation range

Soft Bank Robotics (20215)

65

get valid moves(piece, game board, moves = []):

[]
np.copy(game_board)

left = piece[2] - 1
right = piece[2] + 1
row = piece[1]

piece[@] == player_ piece piece[@] == opp_king piece[®] == player_king:
traverse left(row-1, row-1, -1, piece, left, board, moves)
traverse_right(row-1, row-1, -1, piece, right, board, moves)

if piece[@] == opp_piece piece[8] == opp_king piece[@] == player king:
traverse_left(row +1, rowtl, 1, piece, left, board, moves)
traverse right(row +1, row+l, 1, piece, right, board, moves)

moves
traverse_left(start, stop, step, piece, left, board, moves, skipped=[], count=8):

traverse right(start, stop, step, piece, right, board, moves, skipped=[], count=@):

Figure A.6: Code of available move logic

get_opp_move(board):
locations = get valid locations(board)

details of piece = []
best piece to move = []

r x in locations[0]:
row = x[0]
column = x[1]
piece = int(board[row,column])
piece_info = [piece, row, column]
moves = get_valid moves(piece_info, board)
sorted_moves, highest_move = sorted_best_move(piece_info, moves)
list_best_moves = pick best(sorted moves, highest move, piece_info)
print(list best moves)

if len(list best moves) > len(best piece to move):

elif len(list_best_moves) == len(best_piece to_move) len(best_piece to_move) != @:

f len(details_of_piece) != 0:
X, ¥ = Remove_pieces(board, details_of_piece[@], opp_counters, player_counter, 2, 0, best_piece_to_move)

if len(best_piece_to_move) == @:

return [e],[e]

return details_of piece, best piece to_move

Figure A.7: Code of opponent move logic

66

